The phosphotyrosine-independent interaction of DLC-1 and the SH2 domain of cten regulates focal adhesion localization and growth suppression activity of DLC-1
نویسندگان
چکیده
The tensin family member cten (C-terminal tensin like) is an Src homology 2 (SH2) and phosphotyrosine binding domain-containing focal adhesion molecule that may function as a tumor suppressor. However, the mechanism has not been well established. We report that cten binds to another tumor suppressor, deleted in liver cancer 1 (DLC-1), and the SH2 domain of cten is responsible for the interaction. Unexpectedly, the interaction between DLC-1 and the cten SH2 domain is independent of tyrosine phosphorylation of DLC-1. By site-directed mutagenesis, we have identified several amino acid residues on cten and DLC-1 that are essential for this interaction. Mutations on DLC-1 perturb the interaction with cten and disrupt the focal adhesion localization of DLC-1. Furthermore, these DLC-1 mutants have lost their tumor suppression activities. When these DLC-1 mutants were fused to a focal adhesion targeting sequence, their tumor suppression activities were significantly restored. These results provide a novel mechanism whereby the SH2 domain of cten-mediated focal adhesion localization of DLC-1 plays an essential role in its tumor suppression activity.
منابع مشابه
Deleted in liver cancer-1 (DLC-1): a tumor suppressor not just for liver.
Deleted in liver cancer 1 (DLC-1), as its name implied, was originally isolated as a potential tumor suppressor gene often deleted in hepatocellular carcinoma. Further studies have indicated that down-expression of DLC-1 either by genomic deletion or DNA methylation is associated with a variety of cancer types including lung, breast, prostate, kidney, colon, uterus, ovary, and stomach. Re-expre...
متن کاملSolution Structure of Tensin2 SH2 Domain and Its Phosphotyrosine-Independent Interaction with DLC-1
BACKGROUND Src homology 2 (SH2) domain is a conserved module involved in various biological processes. Tensin family member was reported to be involved in tumor suppression by interacting with DLC-1 (deleted-in-liver-cancer-1) via its SH2 domain. We explore here the important questions that what the structure of tensin2 SH2 domain is, and how it binds to DLC-1, which might reveal a novel bindin...
متن کاملMutations in the focal adhesion targeting region of deleted in liver cancer-1 attenuate their expression and function.
Deleted in liver cancer-1 (DLC-1) is a RhoGTPase-activating protein (RhoGAP) domain containing tumor suppressor that is often down-regulated in various cancer types. Previously, we have shown that DLC-1 is recruited to focal adhesions by binding to the Src homology 2 domains of tensins and the focal adhesion localization is critical for the tumor suppression activity of DLC-1. To investigate wh...
متن کاملDeleted in Liver Cancer 1 (DLC1) Utilizes a Novel Binding Site for Tensin2 PTB Domain Interaction and Is Required for Tumor-Suppressive Function
BACKGROUND Deleted in liver cancer 1 (DLC1) is a Rho GTPase-activating protein (RhoGAP) frequently deleted and underexpressed in hepatocellular carcinoma (HCC) as well as in other cancers. Recent independent studies have shown interaction of DLC1 with members of the tensin focal adhesion protein family in a Src Homology 2 (SH2) domain-dependent mechanism. DLC1 and tensins interact and co-locali...
متن کاملPrio DLC Par
nloaded Rho GTPase-activating protein DLC1 is a tumor suppressor that is often deleted in liver cancer and egulated in other cancers. DLC1 regulates the actin cytoskeleton, cell shape, adhesion, migration, and ration through its Rho GTPase-activating protein activity and focal adhesion localization. In this study, nced DLC1 in nonmalignant prostate epithelial cells to explore its tumor suppress...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 176 شماره
صفحات -
تاریخ انتشار 2007